Corrigendum

Analysis of fluid equations by group methods

W.F. AMES and M.C. NUCCI

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Journal of Engineering Mathematics 20 (1986) 181-187.

Sections 2-4 should be replaced by the text below.

2. Burger's equation

For the Burgers' equation

$$u_t + uu_x = -p_x + \mu u_{xx}$$
(2.1)

the full two-parameter group (α, β) with two arbitrary functions, f(t) and j(t), is

$$T = \alpha + 2\beta t, \quad X = \beta x + f(t),$$

$$U = -\beta u + f'(t), \quad P = -2\beta p + j(t) - xf''.$$
(2.2)

With $\alpha = 1, \beta = 0$ the subgroup

$$T = 1, X = f(t), U = f'(t), p = j(t) - xf''$$

has the generator

$$QI = \frac{\partial I}{\partial t} + f(t)\frac{\partial I}{\partial x} + f'(t)\frac{\partial I}{\partial u} + [j(t) - xf'']\frac{\partial I}{\partial p} = 0.$$
(2.3)

The Lagrange equations of (2.3) yield

$$\bar{u} = u - f(t), \quad \bar{x} = x - F(t), \quad \bar{p} = p + xf'(t) - k(t),$$
 (2.4)

where F' = f and $k(t) = \frac{1}{2}f^2 + \int j(t)dt$. Applying (2.4) to (2.1) results in

$$\bar{u}\bar{u}_x = -\bar{p}_{\bar{x}} + \mu\bar{u}_{\bar{x}\bar{x}}, \qquad (2.5)$$

that is, the steady equation. One integration gives the Riccati equation

$$U'(\bar{x}) + U^2 = \lambda \bar{p}(\bar{x}) + c, \quad \lambda = 2/(4\mu)^2,$$
 (2.6)

where $\bar{u} = -2\mu U$ and c is constant.

3. The Korteweg-de Vries equation

Under the transformation (2.4) the KdV equation

 $u_t + uu_x = u_{xxx} - p_x$

becomes

$$\bar{u}\bar{u}_{\bar{x}} = \bar{u}_{\bar{x}\bar{x}\bar{x}} - \bar{p}_{\bar{x}}$$

which has the first integral

$$\frac{1}{2}\bar{u}^2 = \bar{u}_{x\bar{x}} - \bar{p} + c.$$

4. The equation $u_t + uu_x = [\phi(u_x)u_x]_x - p_x$

The action of (2.4) transforms the equation of the title into

$$\bar{u}\bar{u}_x = [\phi(\bar{u}_{\bar{x}})\bar{u}_{\bar{x}}]_{\bar{x}} - \bar{p}_{\bar{x}}.$$